Coupling Aircraft Noise Prediction and Airport Noise Footprint Analyses for Enhanced Community Noise Prediction Capability

Nandita Bajaj, Tim Bilic
Bombardier Aerospace
Overview

- New analysis and design capabilities for external aircraft noise have been achieved via development and coupling of noise software.

- New capabilities allow for:
 - Design and analysis of enhanced aircraft operations
 - Conceptual design-change feedback

```
Airport Noise Analysis + Aircraft Noise Prediction = New Analysis Capabilities
```
Aircraft Community Noise

• What is it?
 – Noise received at ground-level resulting from aircraft operations
 • Significant to areas in the vicinity of airports

• Why does it matter?
 – Certification requirements
 – Airport-specific access
 – Basis for airport fees, restrictions, quota counts
Aircraft Community Noise Prediction

• Available Methodologies
 – Empirical models
 – Computational Aero Acoustics (CAA)

• Uses of Community Noise Prediction
 – Aircraft-Airport-specific noise assessments
 – Flightless Noise Certification of Derivative Aircraft
 – Analysis of proposed design changes
 – Noise Abatement Procedure Design
 – Preliminary analysis of Conceptual Aircraft

• Why not measure noise?
 – High cost: monetary, time, labour
 – Complex instrumentation
 – Meteorological uncertainty
INM – Integrated Noise Model

• The INM is an industry-standard computer program produced by the United States Federal Aviation Authority (FAA) to analyze aircraft noise levels in the vicinity of an airport.

• It is used by over 700 organizations in over 50 countries to assess changes in noise impact resulting from:
 – changes in runway configurations
 – new traffic demands and fleet mix
 – modifications to other operational procedures

\[
\text{Airport Noise Analysis} + \text{Aircraft Noise Prediction} = \text{New Analysis Capabilities}
\]
INM – Integrated Noise Model

User-defined input parameters

PHYSICAL
- Runway layouts, airfield altitude, atmospheric conditions, flight tracks

OPERATIONAL
- Aircraft types, numbers of aircraft, proportions by runway, proportions by flight track

INM

AIRCRAFT INFORMATION
- Noise data, Performance data

INM Output

NOISE CONTOURS
- For user defined noise metric(s) and observer location(s)

DETAILED REPORTS
- For user defined noise metric(s) and observer location(s)

Manufacturer-defined input parameters

2007 CASI Aircraft Design & Development Symposium
INM Input

- **Atmospheric Conditions**
 - Temperature (59F)
 - Pressure (29.92 in-Hg)
 - Relative Humidity (70%)
 - Headwind (8 kts)

- **Airport Characteristics**
 - Elevation
 - Runway altitude
 - Latitude and longitude
 - Atmospheric conditions over the course of the period being modelled

- **Flight Track Geometry**
 - All possible flight paths and operations that an aircraft may use can be depicted by sketching or entering flight track radar data.
INM Input

- Aircraft Selection
 - The model consists of more than 200 aircraft types in its database which are defined as a function of their performance, engine, and noise data.

- Aircraft definition
 - In addition to aircraft contained in the database, the user can conduct in-house analysis by defining own aircraft.

- Runway and flight track usage
 - The model allows users to specify usage percents of all the defined flight operations by aircraft, operation type, profile definition, runway, or track.
INM Database

- **Performance Data**
 - Altitude vs. distance
 - Power level vs. distance
 - Speed vs. distance

- **INM Profiles**
 - Procedural profiles → Dynamic
 - Fixed-point profiles → Static

- **Noise Power Distance data**
 - INM consists of sets of noise levels for various combinations of aircraft engine power states and distances from observer to aircraft.
Noise-Power-Distance (NPD) Data
INM Output
Aircraft Source Noise Prediction

- Bombardier has updated a public domain version of NASA’s Aircraft NOise Prediction (ANOP) computer program and has implemented additional features for in-house analyses.

- ANOP
 - Semi-empirical noise modeling of engine and airframe noise
 - Models sound propagation, ground effect, installation effects
 - Applies source noise predictions to specified flight profiles

Airport Noise Analysis + Aircraft Noise Prediction = New Analysis Capabilities
ANOP – Engine Noise Sources

- Fan
- Inlet
- Compressor
- Fan
- Exhaust
- Turbine
- Jet
- Mixing

2007 CASI Aircraft Design & Development Symposium
ANOP – Airframe Noise Sources

Main Element Horizontal/Vertical Stabilizer

Landing Gear Flaps + Aileron Slats
ANOP – Physical Effects

- Engine Installation
- Propagation
- Ground Absorption/Reflection
- Flight Profile
ANOP – Input and Output

• Input
 – Simple geometry
 – Wing loading
 – Engine-deck
 – Atmospheric information
 – Ground surface
 – Flight profile
 – Aircraft configuration

• Output
 – 1/3rd Octave Band SPL
 – SPL-lin
 – SPL-A
 – SEL
 – PNL
 – PNLT
 – EPNL

• How does ANOP relate to INM?
 – INM input NPDs can be created from ANOP output
ANOP-INM Coupling

- New design features
- New configuration

GUI

ANOP Input Generator

Batch Processing

Data Import, Extraction and Formatting

ANOP

ANOP input files

ANOP output files

INM

INM NPD (.dbf-IV)

2007 CASI Aircraft Design & Development Symposium
Conclusion

- Noise prediction software has been developed and coupled to industry-standard noise analysis software, resulting in an Enhanced Community Noise Prediction tool.